
Parabolic Anderson models — Large
scale asymptotics

Xia Chen

University of Tennessee/Jilin University

July 11-16, the 15th workshop on Markov processes and
related topics, Changchun

Chen (Dept of Mathematics, UTK) Large scale asymptotics for PAM July 11-16, the 15th workshop on Markov processes and related topics, Changchun 1 / 39



The Parabolic Anderson Model (PAM) is formulated in the
form  ∂tu(t , x) = 1

2∆u(t , x) + V (t , x)u(t , x)

u(0, x) = u0(x) x ∈ Rd

where {V (t , x); x ∈ Rd} is a random field called potential. In this
talk, V (t , x) is a mean-zero stationary generalized Gaussian
field with covariance function

Cov
(
V(t, x),V(s, y)

)
= γ0(t− s)γ(x− y)

Throughout we assume the homogeinity

γ0(cu) = c−α0γ0(u) and γ(cx) = c−αγ(x)

for some α0, α > 0.
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An important special case is the fractional noise (appering
in most of tslk)

V(t, x) = ẆH(t, x) =
∂d+1WH(t, x1, · · · , xd)

∂t∂x1 · · · ∂xd

the formal derivative of the fractional Brownian sheet
W(t, x1, · · · , xd) with the Hurst parameter H = (H0,H1, · · · ,Hd)
(H0, · · · ,Hd ∈ (0,1)). The homogeinity holds in this case with

α0 = 2− 2H0 and α = 2d− 2
d∑

j=1

Hj

It is known that the covarinace function in this case is

Cov
(
ẆH(t, x), ẆH(s, y)

)
= γ0(s− t)γ(x− y)

with homogenity

γ0(cu) = c−α0γ0(u) and γ(cx) = c−αγ(x)
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Model on population density

In a population model.

u(t, x): The particle density at the time t and the site x.

Two driving forces:

1. Birth and death: with the rate V(t, x).

2. Migration: in the direction of the fastest decrease in
population density: −∇u(t, x) (Fick’s law)

We show that this model is described by Anderson
equation.
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Given a nice bounded domain D ⊂ Rd, the change rate of
the population in D:

d
dt

∫
D

u(t, x)dx =
1
2

∫
∂D

(∇u(t, x) · ~n)dS +

∫
D

V(t, x)u(t, x)dx

where ~n = ~n(x) is the unit normal vector in out-bond direction.

By divergence theorem,∫
∂D

(∇u(t, x) · ~n)dS =

∫
D

div(∇u(t, x))dx =

∫
D

∆u(t, x)dx
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So we have∫
D
∂tu(t, x)dx =

1
2

∫
D

∆u(t, x)dx +

∫
D

V(t, x)u(t, x)dx

which leads to the Anderson equation

∂tu(t, x) =
1
2

∆u(t, x) + V(t, x)u(t, x)
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Association to KPZ equation

A hot topic is the study of Kardar-Parisi-Zhang (Phy. Rev.
Letters (1986)) (KPZ) equation in the case d = 1:

∂th =
1
2

(∂h
∂x

)2
+

1
2
∂2h
∂x2 + Ẇ(t, x)

where Ẇ(t, x) = ∂2

∂t∂xW(t, x) is an 1-dimensional time-space white
noise (H0 = H = 1/2).

KPZ equation describes the stochastic growth of the
interface. See Martin Hairer (Ann. Math. (2013)) for
mathematical treatment.
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Association to KPZ equation

Under the Hopf-Cole transform

h(t, x) = log u(t, x)

KPZ equation is formally transformed into the parabolic
Anderson equation with V(t, x) = Ẇ(t, x)
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Large scale asymptotics

Different from the small-scale properties such as regularity
of the sample path and small-time asymptotics, the large scale
asymptotics concern the long term or high moment behaviors of
the system, or the the pattern of the dynamics over a large
space domain. There are two types of large scale asymptotics:

1. Annealed laws — the limit laws for E un(t, x) as t→∞ or
as m→∞.

2. Quenched laws — the limit laws for u(t, x) conditioning
on V(t, x) as what can be said as t→∞ or |x| → ∞.
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Mathematical definition of Pam
Take

V(t, x) = ẆH(t, x) =
∂d+1WH(t, x1, · · · , xd)

∂t∂x1 · · · ∂xd

The parabolic Anderson model is rigoriosly defined by the
integral equation:

u(t, x) = pt ∗ u0(x) +

∫ t

0

∫
Rd

pt−s(y− x)u(s, y)WH(dyds)

where pt(x) is the Brownian semi-group

pt(x) =
1

(2πt)d/2 exp
{ |x|2

2t

}
x ∈ Rd

Here we assume that the stochastic integral on the right hand
side is in the Ito-Skorohkod sense.
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Feymann-Kac representation

For simplicity, we take u0(x) = 1 in the rest of discussion.
The solvability (existance/uniqueness) of the system is largely
credited to Hu and Nualart and the Kansus school and their
collaborators for their work in recent years. In their work, the
solution can be formally given as

u(t, x) =E x exp

{∫ t

0
ẆH(t− s,B(s)

)
ds

− 1
2

∫ t

0

∫ t

0
γ0(s− r)γ

(
B(s)− B(r)

)
dsdr

}
for m = 2,3 · · · , where B(s) is a d-dimensional Brownian motion
independent of WH with B0 = x and the expection E x is with
respect to B(s).
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Feymann-Kac representation

Unfortunately, the time interals in the Feymann-Kac
representation do not make sense in the general case
considered here. On the other hand, based on it and a formal
computation one can get the rigoruous moment representation

E um(t, x) = E 0 exp

{ m∑
j<k

∫ t

0

∫ t

0
γ0(s− r)γ

(
Bj(s)− Bk(r)

)
dsdr

}
where B1(s), · · · ,Bm(s) are independent d-dimensional Brownian
motions with Bj(0) = 0. This formula becomes our starting point
for the moment asymptotics.
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Intermittency

The intermittency of the system can be defined by the
moment asymptotic beavior

lim
t→∞

t−β log E um(t, x) = κ(m)

with κ(m)/m increases to infinity as m→∞, where β > 0 is
independent of m and x. By Gärtner-Ellis’s theorem, this leads to

lim
t→∞

t−β log P{log u(t, x) ≥ λtβ} = − sup
m
{mλ− κ(m)} λ > 0

It shows that in a long run, the high peak appears at the given
site x with a exponentially small but positive probability.
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Intermittency

Similarly, the high moment asymptotics (if true)

lim
m→∞

m−β log E um(t, x) = κ(t)

with β > 2 leads to

lim
m→∞

m−β log P
{

log u(t, x) ≥ mβ−1} = − sup
θ>0

{
θ − κ(t)θβ

}
or

lim
a→∞

a−β(β−1)−1
log P

{
log u(t, x) ≥ a

}
= −(β − 1)−

β+1
β−1 (β − 2)κ(t)−(β−1)−1

Chen (Dept of Mathematics, UTK) Large scale asymptotics for PAM July 11-16, the 15th workshop on Markov processes and related topics, Changchun 14 / 39



Intermittency

Theorem (C. AIHP (2017, 2019))
When γ0(·) = C0| · |−α0 with 0 < α0 < 1 (i.e., ẆH(t, x) is colored in
time) and when the H satisfies the condition for solvability,

lim
t→∞

t−
4−α−2α0

2−α log E um(t, x) =
(1

2

) 2
2−α

m(m− 1)
α

2−αE

for m = 2,3, · · · . In addition,

lim
m→∞

m−
4−α
2−α log E um(t, x) =

(1
2

) 2
2−α

t
4−α−2α0

2−α E

Remark. Universality, super-linear growth in t.
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Intermittency

In the theorem, E is given in terms of variation

E = sup
g∈Ad

{∫ 1

0

∫ 1

0

∫
Rd×Rd

γ0(s− r)γ(x− y)g2(x)g2(y)dxdydsdr

− 1
2

∫ 1

0

∫
Rd
|∇g(s, x)|2dxds

}
where

Ad =
{

g(s, x); ‖g(s, ·)‖2 = 1 and ‖∇g(s, ·)‖2 <∞ for 0 ≤ s ≤ 1
}
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Intermittency

When ẆH(t, x) is white in time, i.e., γ0(·) = δ0(·) (α0 = 1),

E u(t, x)m = E 0 exp

{ m∑
j<k

∫ t

0
γ
(
Bj(s)− Bk(s)

)
ds
}

In this case, the variation appearing in the previous theorem
becomes

E = sup
g∈Fd

{∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy− 1
2

∫
Rd
|∇g(x)|2dx

}
where

Fd =
{

g(x); ‖g‖2 = 1 and ‖∇g‖2 <∞
}
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Intermittency

Theorem (C. Ann. Probab.(2016) and AIHP(2017))
Assume ẆH is white in time. Under the solvability condition,

lim
t→∞

1
t

log Eum(t, x) = L(m)

for m = 2,3, · · · . In addition,

lim
m→∞

m−
4−α
2−α log E um(t, x) = t

(1
2

) 2
2−αE

where L(m) is given as variation satisfyies

lim
m→∞

m−
4−α
2−αL(m) =

(1
2

) 2
2−αE

Remark. Linear growth in time and asymptotic universality.
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Intermittency

An interesting problem is to find the exact dependence of
L(m) on m. This problem is of significance in physics. The only
case we know of is the when ẆH is an one-dimensional white
noise (i.e., d = 1 and γ0(·) = γ(·) = δ0(·)).

Theorem (Bertini-Cancini Statist. Phy.(1995) and C.
AIHP(2015))
When ẆH is an one-dimensional white noise

lim
t→∞

1
t

log Eum(t, x) =
1
24

(m3 −m)

Chen (Dept of Mathematics, UTK) Large scale asymptotics for PAM July 11-16, the 15th workshop on Markov processes and related topics, Changchun 19 / 39



Intermittency

Given that α = 1 and E = 1/6 for one-dimensional
time-space white noise, the above theorem supports the
following conjecture.

Conjecture. When ẆH is white in time (i.e., γ0(·) = δ0(·)),

lim
t→∞

1
t

log Eum(t, x) =
(1

2

) 2
2−α

(m
4−α
2−α −m)E

For comparison, recall that when ẆH is colored in time
(α0 < 1),

lim
t→∞

t−
4−α−2α0

2−α log Eum(t, x) =
(1

2

) 2
2−α

m(m− 1)
2

2−αE
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Intermittency

For the first time, it is shown in a recent paper (C,
AIHP(2019+) that the parabolic Anderson model can be
solvable when ẆH is rough in time (i.e., α0 > 1). Another
surprise finding is that the weak intermittency (C, AIHP(2019+)

lim
t→∞

1
t

log Eu2(t, x) = κ(2)

provides a linear (instead of sub-linear!) growth in time. The full
intermittency and the high moment asymptotics in this case
remain unknown at this time.
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Quenched space asymptotics

The problem is concerned with the almost sure qrowth rate
of the quantity

max
|x|≤R

u(t, x)

as R→∞. The following is the first work on this regard.

Theorem (Conus, Joseph and Koshnevisan (2013),
Ann. Probab.)
When d = 1 and ẆH is white in time and space,

0 < lim inf
R→∞

(log R)−2/3 log max
|x|≤R

u(t, x)

≤ lim sup
R→∞

(log R)−2/3 log max
|x|≤R

u(t, x) <∞ a.s.
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Quenched space asymptotics

It turns out that the quenched law can be extended to a
much larger class of Gaussian noise with a more precise form.

Theorem (C. Ann. Probab (2016))
When ẆH is white or colored in time and space

lim
R→∞

(log R)−
2

4−α log max
|x|≤R

u(t, x) =
4− α

4

( 4E
2− α

) 2−α
4−α

d
2

4−α t
4−α−2α0

4−α a.s.

When d = 1 and when ẆH is white in time and space, in
particular,

lim
R→∞

(log R)−2/3 log max
|x|≤R

u(t, x) =
3
4

3

√
2t
3

a.s.
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Application to KPZ equation

Recall the one-dimensional KPZ equation

∂th =
1
2

(∂h
∂x

)2
+

1
2
∂2h
∂x2 + Ẇ(t, x)

where Ẇ(t, x) is and (1 + 1)-dimensional white noise. Under the
Hopf-Cole transform

h(t, x) = log u(t, x)

the previous theorem leads to

lim
R→∞

(log R)−2/3 max
|x|≤R

h(t, x) =
3
4

3

√
2t
3

a.s.
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Idea of the proof

Write λ0 > 0 for the constant appearing on the right hand
side of the quenched law.

By Borel-Cantelli lemma all we need is to show∑
k

P
{

log max
|x|≤2k

u(t, x) ≥ λ(log 2k)
2

4−α

}
<∞

for λ > λ0, and∑
k

P
{

log max
|x|≤2k

u(t, x) ≤ λ(log 2k)
2

4−α

}
<∞

for λ < λ0.
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Idea of the proof

Given a > 0, set

Qk = aZ ∩ {|x| ≤ 2k}

In a suitable sense

max
|x|≤2k

u(t, x) ≈ max
z∈Qk

u(t, z)

when a > 0 is small. Under the initial condition u0(x) = 1, u(t, x)
is stationaryin x. Hence,

P
{

log max
z∈Qk

u(t, z) ≥ λ(log 2k)
2

4−α

}
≤ C2dkP

{
log u(t,0) ≥ λ(log 2k)

2
4−α

}
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Idea of the proof

On the other hand, u(t, z) (z ∈ Qk) are “nearly” independent
when a > 0 is large. Hence,

P
{

log max
z∈Qk

u(t, z) ≤ λ(log 2k)
2

4−α

}
≈
(

1− P
{

log u(t,0) ≥ λ(log 2k)
2

4−α

})C2dk

As a consequence of high moment asymptotics,

P
{

log u(t,0) ≥
(
λ0 ± ε

)
(log 2k)

2
4−α

}
≈ exp

{
− (d± δ) log 2k}

for large k.
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Idea of the proof

Summarizing our steps, we have∑
k

P
{

log max
z∈Qk

u(t, z) ≥ (λ0 + ε)(log 2k)
2

4−α

}
<∞

and ∑
k

P
{

log max
z∈Qk

u(t, z) ≤ (λ0 − ε)(log 2k)
2

4−α

}
<∞

That is what we need.
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Quenched time asymptotics

We first consider the parabolic Anderson model ∂tu(t, x) = 1
2∆u(t, x) + ẆH(x)u(x)

u(0, x) = 1

with ẆH(x) being a time-independent fractional Gaussian noise
of the Hurst parameter H = (H1, · · · ,Hd). Recall our notation

α = 2d− 2
d∑

j=1

Hj
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Quenched time asymptotics

Without renormalization, we have the Feynman-Kac
representation

u(t, x) = E x exp

{∫ t

0
ẆH(Bs)ds

}
whenever the expression on the right hand side makes
reasonable sense.

Our goal is the almost sure long term asymptotics for
u(t, x). Carmona and Molchanov (1995, PTRF) conjectured that
under the proper assumption

u(t, x) ∼ Ct(log t)
4−α
2−α a.s. (t→∞)
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Quenched time asymptotics

The answer is different:

Theorem (C. Ann. Probab.(2014))
Assume that 0 < α < 2 ∧ d.

lim
t→∞

t−1(log t)−
2

4−α log u(t, x)

=
4− α

4

( 4E
2− α

) 2−α
4−α

d
2

4−α t
4−α−2α0

4−α a.s.

When d = 1 and ẆH(x) is white (α = 1), the above condition
does not hold, but we still have

lim
t→∞

t−1(log t)−2/3 log u(t, x) =
1
2

(3
2

)2/3
a.s.
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Quenched time asymptotics

Consider the case when d = 1 and when ẆH(x) is rough,
i.e., 0 < H < 1/2 or α = 2− 2H > 1. In this case, the covariance

γ(x) = CH

∫
R

eiξx|ξ|1−2Hdξ

is interpreted as a generalized function.

Theorem (Chakrabotry, C., Gao and Tindel, Stoch.
Proc. Appl. (2019+))

lim
t→∞

t−1(log t)−
1

1+H log u(t, x) =
1 + H

2

(2E
H

) 1
1+H

a.s.
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Quenched time asymptotics

The setting of the time-depent noise ẆH(t, x) is very
different as far as the quenched long term asymptotics is
concered. All evindence suggests the pattern

lim
t→∞

1
t

log u(t, x) = C0 a.s.

In the skorohkod regime, Bertini-Giacomin (PTRF, 1999) prove
that

lim
t→∞

1
t
E log u(t, x) = − 1

24
which suggests C0 = −1/24. The general case still remains
unknown.
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Quenched time asymptotics
A much harder game is to understand the long term

behavior of
log u(t, x)− E log u(t, x)

The only case we know the answer is when d = 1 and ẆH(t, x) is
a time-space white noise,

Theorem (Amir, Corwin and Quastel Comm. Pure
Appl. Math. (2011))
When d = 1, and ẆH(t, x) is a time-space white noise and when
u0(x) = δ0(x),

21/3t−1/3
(

log u(t, t2/3x) +
t

24

)
d−→ LGUE

where LGUE is the GUE Tracy-Widom distribution.
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Thank you!
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